What is polyurethane?

Every day, we use polyurethanes in some way or another – in our homes, offices, cars, and for leisure and sport activities, as well as on vacation.

There are many forms of polyurethane, which is a type of plastic material. You can make it rigid or flexible to suit your needs. This makes polyurethane the ideal material for many end-user applications, such as:

  • Insulation of freezers and refrigerators
  • Building insulation
  • Cushioning for furniture
  • mattresses
  • Car parts
  • Coatings
  • Adhesives
  • Rollers and tyres
  • Composite wood panels
  • Soles for shoes
  • Sportswear

Polyurethanes can be used in a variety of applications and are safe and modern. Polyurethanes are versatile and safe. They can be used to make a variety of industrial and consumer products.

Professor Otto Bayer (1902-1982) invented polyurethane in the 1930s. There are many types of polyurethane that look and feel different. Polyurethane is used in many products including coatings, adhesives, shoes soles, mattresses, and foam insulation. The basic chemistry of all types is the same.

Polyurethane was first used as a substitute for rubber during World War II. They were expensive and difficult to find at that time. Other applications were also developed during World War II, mostly involving coatings of various types, from aircraft finishes to clothing that is resistant.

Polyurethane was used in adhesives and elastomers in the 1950s. Later, flexible cushioning foams that were similar to the ones used today were developed.

Subsequent decades saw many further developments and today we are surrounded by polyurethane applications in every aspect of our everyday lives. Polyurethane is not a common product, but it is often ‘hidden’ behind other materials or covers. It would be difficult to imagine life without it.

Research and Science on Polyurethanes

Polyurethane can be described as plastic polymers that are made from combining polyols and diisocyanates ( TDI, MDI ). There are hundreds of types of polyurethane, each made in a different way.


    • To create the soft and comfortable feel of a sofa or mattress, carbon dioxide is used to blow it. The foam will be more soft if it is used with more blowing agents.
    • A rigid foam can trap pentane in its closed cells, maximising its insulation ability.
    • Rollerblade wheels on the other side don’t require any blowing agents and instead have a dense, hardwearing consistency.
      Polyurethanes, energy efficiencyPolyurethanes offer many solutions for eco-design and energy conservation because they are versatile and excellent insulators. Polyurethanes are constantly looking for ways to minimize their impact on the environment. They are currently investigating ways to increase the energy efficiency of manufacturing processes, and create end products that can save energy like building insulation. These products can help businesses and families reduce their energy costs while also protecting the environment. Future production methods will be improved, which could lead to more affordable and environmentally-friendly polyurethanes.
      Did you know?
      You may not be aware of many interesting facts about polyurethane, but you can expand your knowledge by looking at the following list.You will also find links to informative fact sheets that provide more detail on various aspects of this product.
      Information and figures about polyurethanes
    • Insulation made of polyurethane insulation 1.6cm thick has the same insulation performance as concrete walls that are 1.34m thick!
    • All polyurethane foams are HCFC-free within the EU since 2003.
    • The EU’s polyurethane sector employs more than 360.000 people.
    • In the 1950s, the first surfboard made of polyurethane was used.
    • Models today designated A++ are 60% more efficient because of the inclusion of polyurethane in refrigerators.
    • In 1973, the introduction of thermoplastic polyurethane wheels (TPU) and later TPU boots made roller skates more popular. They are now known as Rollerblades.
    • Insulation saves energy by reducing the amount of polyurethane insulation needed to make one house.
    • Polyurethane is also known as PU and PUR.
    • All polyurethane foams are CFC-free in Europe since 1995. They have also been HCFC-free since 2003.
    • Many applications can use foams made from renewable materials, such as mattresses.
    • A PU-based solution is protecting more dams and dikes from storms.



Dr. Otto Bayer discovers basic polyurethane chemistry I.G. Farben


First introduction of rigid foam into an aircraft


Adhesive for rubber, metal, and glass


First insulation application – a beer barrel


Polyurethane rubber for vulcanisation


Synthetic leather is made from polyurethane soles for shoes


Cushions made of polyurethane foam


Spandex fiber introduced for clothing pu


NASA has developed space suits with a polyurethane liner for the Mercury mission.


Panels for sandwich-building steel panels


Integral skin for the sole of shoes and armrests


The K67, the first all-plastic car with interiors made of polyurethane, is on display in Germany


For increased safety, use bumpers on your automobile


Imitation wood, Orthopaedics and Medical Applications


Track surface for the Munich Olympic Stadium


Roller skates are now possible with the help of thermoplastic polyurethane wheels.


Bob Evans invented the polyurethane “Forcefin” flippers that can be used for many underwater activities.


Invention of spray insulation for buildings


Sandwich panels made from polyurethane-based materials were first introduced


Polyurethane is used to make surfboards


Passenger safety in cars with energy-absorbing foam


For passenger safety in cars, energy-absorbing foam


First football to contain polyurethane materials


The first passive house constructed in Darmstadt (Germany) using polyurethane-insulated window frames


Tempur-Pedic is the first to produce a memory foam mattress made from polyurethane in the USA


NASA’s Endeavour spacecraft makes its first flight. The shuttle uses polyurethane for external fuel tanks protection


Thin wall medical tubing, i.e. catheters


To enhance performance, bicycle tires contain polyurethane material.


To improve performance, car tires contain polyurethane material.


All polyurethane foams are HCFC-free in Europe. Since 2003


Elastocoast polyurethane adhesive system that reinforces existing dykes.


After a 10-year clinical trial, Syncardia, a total artificial heart with polyurethane ventricles was approved for use.


Ballast bed with partially foamed material for rail vehicles. This reduces noise pollution and maintenance costs.


Swimsuits made of 100% high-speed, polyurethane are ideal for world-class swimmers.


The porous Elastopave pavement allows air and water to move through it


Cars with scratches can be repaired by self-curing coating


The first solar-powered plane that has flown around the globe; polyurethanes are vital in this light-weight frame.


Apple unveils the smart cover made of polyurethane for its iPad 2


A robotic’smart bird’ has been developed that can fly with a bird-like motion. It is made of polyurethane, fibre-glass casing and nylon.

MARCH 2011

Airbus, which uses polyurethane technology for their aeroplanes has reached their 10,000th order

MAY 2011,

Formula One’s top tracks use polyurethane safety block to replace tires

JUNE 2011

For e-cars, lightweight designs and high-performance insulation are made of polyurethane foam.

JULY 2011

In Germany, the first plant to use carbon dioxide as an inert for polyurethane has been opened

Olympic track polyurethane

Polyurethane helps Olympic athletes achieve their dreams

Right now in Tokyo, we have brought together the best athletes from all over the globe for a summer of celebration and competition. Polyurethane is present in Japan to support these top athletes and make certain your favorite sports are possible. Here are some ways that polyurethane helps world-class athletes reach their sporting goals.

Running Track Systems | Synthetic Running Track | Paved In Place

Track Field Surface

In years past, track surfaces came in many forms: gravel, dirt, and asphalt. Most track surfaces used today by serious athletes are made from rubber crumbs that have been bonded with a polyurethane adhesive. 09- tracks provide relative springiness, which allows for faster runs. However, they can also cushion runners’ feet and prevent injury to their joints. Polyurethane track systems can withstand high temperatures without becoming sticky or tacky like asphalt tracks. Polyurethane track systems allow rainwater to flow through the track, with the water collecting in an irrigation device below.

NRG Track Systems | General Sports Surfaces

Track and Field Wear

Polyurethane is a well-known component of performance wear, as many readers know. It’s the perfect fit for apparel designed for track and field athletes. The fabric is stretchy, so it moves with the wearer and stays taut. Polyurethane clothing is lightweight and thin, which means that it doesn’t add bulk to the world-class athletes as they strive for excellence.

lzr racer banned Shop Clothing & Shoes Online


The power of polyurethane was on full display in 2008 as the world witnessed its versatility. Swimmers set records in the pool as countries started to incorporate polyurethane into their swimwear. According to swimsuit manufacturers, the suits compress the muscles of swimmers which reduces friction and allows them to move faster in the pool.

The End of Swimsuit Design Innovation | Arts & Culture | Smithsonian  Magazine

New standards have been established by the bodies that govern various aquatic sports. They regulate how a swimmer’s swimsuit fits and what materials it may contain. Polyurethane remains an important part of these swimsuits and the 25 records that were set in 2005 were accepted.

Top 15 Tenders and RIBS for the Modern Cruiser - Southern Boating

Boating Equipment

Polyurethane is often used to protect athletes from the elements when they take to water in boating competitions.  performance polyurethane finishes protect boats exteriors from salt, wind, and water. A boat’s hull can also be encased in rigid polyurethane. This material can be used to improve buoyancy and add weight to all types of boats. Because it is able to absorb water and petrochemicals, polyurethane is a popular material for boats.

Ultra Shock 20' x 20' x Roll-Up Wrestling Mat | AK Athletic Equipment

The Mat

What does high jump, Taekwondo and pole-vaulting have in common with jiu-jitsu? They all take place on a mat. You guessed it, polyurethane is likely to be in that mat. Polyurethane is an excellent choice for mats that are used in athletic activities. Polyurethane is flexible and can absorb the impact of falling or tumbling athletes. Polyurethane is also strong enough to withstand repeated impacts from athletes over time.


What’s the difference between thermosetting and thermoplastic polyurethane?

I have been seeing this and getting this question a lot from you readers as well as on message boards and facebook groups, so i figured i would take a little time and write up an answer for anyone looking.

Thermoset vs Thermoplastic

Thermosets are materials that undergo a chemical reaction (curing) and normally transform from a liquid to a solid. In its uncured form, the material has small, unlinked molecules (known as monomers). The addition of a second material (cross-linker, curing agent, catalyst) and the presence of heat or some other activating influences will initiate the chemical reaction (curing reaction).

How does a thermo-plastic or a thermosetting resin or plastic, differ from  each other? - Quora

The molecules cross-link and form significantly longer molecular chains and cross-link networks during this reaction, causing the material to solidify. This change is permanent and irreversible. Subsequently, exposure to high heat will cause the material to degrade, not melt. This is because these materials typically degrade at a temperature below where they would be able to meet.

Examples Of Thermosetting And Thermoplastics Materials. | Download Table

Thermoplastics are melt-process-able plastics (materials that are processed with heat). When enough heat is added to bring the temperature of the plastic above its melting point, the plastic liquefies (softens enough to be processed). When the heat source is removed and the temperature of the plastic drops below its melting point, the plastic solidifies back into a glass-like solid.

This process can be repeated, with the plastic melting and solidifying as the temperature climbs above and drops below the melting temperature, respectively. However, the material can be increasingly subject to deterioration in its molten state, so there is a practical limit to the number of times that this reprocessing can occur before material properties begin to suffer. Many thermoplastic polymers are addition-type, yielding very long molecular chain lengths (very high molecular weights).

As mentioned above, thermoplastics are capable of being repeatedly softened by the application of heat and hardened by cooling and have the potential to be the most easily recycled, which has seen them most favored in recent commercial uptake. In contrast, the better realization of the fiber properties is generally achieved using thermosets.
DSC can be a good tool to determine if it melts and can re-melt thermoplastic or just Tg (example) for thermoset.

Hopefully I have answered your questions regarding thermosetting and thermoplastic polyurethane. If you have any further questions, please do not hesitate to comment below and I will be glad to answer any you might have.


New Polyurethane Designed to Degrade for Reuse

Polyurethane is utilized in a wide range of materials, including paints, foam mattresses, and insulation. These various applications produce large amounts of waste. A team at the University of Illinois has produced a method to break down polyurethane waste and turn it into other beneficial products.
The researchers will publish their findings at the American Chemical Society National Meeting and Exposition.
In the U.S. alone, 1.3 million tons of polyurethane waste is produced each year. The waste usually ends up in landfills or is burned, a process that requires a large energy input and creates toxic byproducts.
“We want to solve the waste problem by repurposing polyurethane,” said Ephraim Morado, a graduate student in the laboratory of chemistry professor Steven Zimmerman, who led the study.
Polyurethanes are made of two elements that are hard to break down: isocyanates, which are composed of nitrogen, carbon, and oxygen, and alcohol groups called polyols.
“The polyol is usually petroleum-based and is not degradable,” Morado said. The team combined a more easily degraded chemical unit to address this problem, an acetal, to the polyol. And because polyurethanes are water-resistant, the researchers developed an acetal unit that degrades in solvents other than water.
“When we add a combination of trichloroacetic acid and dichloromethane, the material swells and rapidly degrades at room temperature,” Morado said.
The degradation results that are formed can then be repurposed to new materials. For example, the researchers transformed elastomers—a type of polyurethane used in rubber bands, packaging, and car parts—into adhesive glue.
“One of the challenges with our method is that the starting material is costly,” Zimmerman said. “We are trying to find a safer, cheaper way to achieve this. Our second obstacle will be to get a patent and find someone interested in marketing it.”
The researchers are experimenting with the same technique on other polyurethane substances. They also hope to use milder solvents, such as vinegar, to carry out the degradation.
“The polyurethane materials have complex properties based on the chemical composition of the isocyanate,” Zimmerman said. “We can improve the structure of the acetal accordingly.”


Polymers in our everyday life

Polymers, a word that we hear quite often, is vital, and one can not think of life without it. Polymers, a large class of materials, consists of numerous small molecules named monomers linked together to form long chains and are used in many items in our everyday lives.

People have used polymers in our lives for many years, but we did not fully comprehend just how abundant it was until World War II. There were moderately few materials offered for the production of the products required for civilized life. Steel, glass, wood, stone, brick, and concrete for most of the building and construction, cotton, wool, jute, and a few other agricultural products for clothes or material manufacture were used.

Polymers World

The rapid increase in demand for the amount of produced products has brought about new materials. These new materials are polymers, and their impact on the present way of living is virtually incalculable.

Products made from polymers are all around us: clothing made from artificial fibers, polyethylene cups, fiberglass, nylon bearings, plastic bags, polymer-based paints, epoxy glue, polyurethane foam cushion, silicone heart valves, and Teflon-coated cookware. The list is practically endless.

The word “polymer,” or often “macromolecule,” is derived from classical Greek poly meaning “numerous,” and meres suggesting “parts.” The polymer molecule has a high molecular weight (between 10 000-1000 000 g/mol) and includes several structural units usually bound together by covalent bonds.1,3. Polymers are obtained through.

The Chain reaction of monomers. Monomers can react with another molecule from the same type or another key in suitable conditions to form the polymer chain. This procedure in nature has resulted in natural polymers, while artificial polymers are man-made. Polymers have been around us in the

Polymers have been around since the beginning of time. However, man-made polymeric products have been analyzed since the middle of the 19th century. Today, the polymer market has quickly developed and is now larger than the copper, steel, aluminum, and some other industries combined.

Both natural and synthetic polymers are remarkably connected in the support and facilitation of human life. They are responsible for life itself, medication, nutrition, interaction, transport, irrigation, container, clothing, tape-recording history, structures, highways, etc. It is hard to think of a human society without synthetic and natural polymers. In our ever-increasing technological world, science plays an essential role in offering services to critical problems of food, clean and plentiful water, air, energy, and health. Understanding polymers and related texts offers both the details and insights of their better understanding in our life. The information gathered from the basic science courses leads to comprehending the polymers. This info includes factual, theoretical, and useful principles presented in science. It is of use to those who wish to be just well educated and like to pursue medicine, engineering, physics, chemistry, biomedical sciences, law, service, and so on 2,3.

Artificial and natural polymers could be used in the form of inorganic and natural polymers; coatings, elastomers, adhesives, blends, plastics, fibers, caulks, ceramics, and composites. The basic principles applied to one polymer category are applied to all other classifications and a few easy fundamental guidelines. These basics are integrated into the fabric of the polymer texts.4.

It is not surprising that nearly all product researchers and more than half of all chemists and chemical engineers, a large number of physicists, fabric technologists, mechanical engineers, pharmacists, and other scientific groups are associated with research and development projects polymers. Also, the fact that pharmacy, biomedicine, molecular biology, biochemistry, and biophysics are the fields that polymers and polymer chemistry play a significant role in advancing their brand-new areas. The study of massive particles is one of the most attended and fastest-growing fields of science. For that reason, it appears that polymer is not a specialized interdisciplinary or branch of chemistry. Rather, it is a specialized, broad, and unique discipline covering some chemistry and several other clinical fields. The fields of science have always become extremely active when research groups trained in one specialized field turn their interests to a related field. This has always been and, in the future, will be particularly real in polymer research study works. The requirement in the polymer is the application of concepts and chemistry knowledge and methods to complicated products and macromolecules. This is a basic task, and it requires the absolute best manner ins which chemistry might offer.6.

Perhaps polymer chemistry, more than any other research study field, crosses over and cuts the conventional lines of all branches of chemistry, biology, physics, product, engineering, pharmacy, and even medication. And a beginner to polymer science needs enough ability to mix the huge understanding from all fields mentioned above. Therefore, this article has been written to show the importance and critical functions of polymers in human life.



Why should I apply a clear topcoat to my garage floor coating?

This is an understandable question that pops up from time to time for the typical house owner wanting to save some cash. The real concern, nevertheless, ought to be, why would not you apply a clear coat? After all, there are many benefits to adding a clear topcoat over the garage floor’s color coat.

Anybody who has installed a garage floor coating correctly will tell you that the most laborious and time-consuming part is prepping the floor for the coating. Using the coating goes fast, and for numerous, it is the fun part of the job. So, after all that work of getting the concrete all set, why wouldn’t you want to invest a little bit more time and money to guarantee a longer-lasting and even more stunning floor coating?

With multiple clear coating options to select from, epoxy, polyaspartic, and polyurethane are the most typical choices. The exact same benefits can apply to making use of all three mentioned floor finishes. So to respond to these questions, let’s take a look at the top 10 reasons that you should apply a clear topcoat to your garage floor.


A clear coat will add sturdiness to your garage floor coating and make for a longer wearing surface. The additional coat also includes thickness to the floor coating, removing hot tire lift and soaking up effects better.


Due to the fact that the clearcoat functions as a sacrificial layer, the epoxy color coat will be secured. Without it, the colored epoxy coat can lose its radiance from wear. Though resistant to the majority of chemicals, some oil spills or leakages allowed to sit for long periods can blemish the coating depending on the quality of epoxy you applied.


If you used paint chips or color flakes to your floor, the clear coat would safeguard them from peeling up and collecting dirt. Considering that the color flakes are partially embedded into the epoxy, dirt and grime can gather in and around the flakes’ edges, making it more difficult to keep tidy depending on the number of colors flake was applied.

Cleaning of the floor and other activities can likewise trigger color flakes to bring up or chip away. When a clear coat is added, the color flakes are protected by the clear layer over them.


With a clear coat over the color flakes, the floor is likewise much easier to clean up. Dust mops can slide over the floor without capturing color flakes as it goes. This is particularly true if you have heavy flake protection on your floor. It likewise enables aggressive scrubbing if essential without the worry of losing color flakes or dulling the color coat.


The additional layer of a clear leading coat includes depth to the appearance of the garage floor. This creates a richer looking surface that appears more luxurious and much thicker than it is.


Depending upon which kind of clear coat you select, the clear will include a shiny shine to the floor that will reflect light much better than the color coat. Polyurethane finishes are sometimes offered in different levels of gloss.

This is a great choice for projects in the garage or working on cars merely because it develops more light. It might also indicate that you will not have to incorporate more overhead lighting like you believed you may require.


All garage floor finishings will develop microscopic and in some cases bigger scratches on the surface of the coating. A clear topcoat helps conceal or camouflage most of these scratches, so they are less noticeable and do not detract from the floor’s looks. This is because the clear leading coat will function as the sacrificial layer and prevents the color coat from being damaged.


Anti-slip ingredients are concealed better in a clear coat. Because a lot of additives are translucent in color, they will not stand apart. Without a clear topcoat, they are contributed to the color coat rather. This makes the anti-slip granules a lot more noticeable as little bumps resembling sandpaper on the garage floor.


After several years of use, an epoxy garage floor coating can start to show its age depending upon how much activity it has seen. If it had a clear topcoat of epoxy or polyurethane, it might easily be roughed up with sandpaper and have a brand-new coat of clear used.

The old topcoat’s sanding removes any acnes, scratches, and other flaws that the floor coating obtained throughout the years. As soon as the new clear coat is used, your garage floor coating will look brand new once again.


When you compare a color layered epoxy garage floor with a top coat of clear to one that does not, there is no question about which looks better. The clear coat is what provides the garage floor that extra depth and showroom shine that screams, “take a look at me!”

So if you’re on the fence about whether or not to add a clear topcoat to your garage floor coating, consider all the benefits it will provide in the long term. Yes, it will cost a bit more money, and yes, it may indicate another day of being without your garage. However, as soon as you do, you will be rewarded with a garage floor to be happy with for several years to come, and you will be glad that you did it.

If you are unsure of what type of topcoat to incorporate into your floor project, we recommend going with a product called ArmorFloor. Its produced by ArmorThane and is a two-part polyaspartic. To learn more about using this product, check out this article on applying it.