subheader-secondary-containment2-1024x384

Polyurea Has Become The Most Used Secondary Containment Application


Two EPA requirements are now in full effect for secondary containment in underground storage tanks, and another to cover aboveground tanks. The Code of Federal Regulations 40, Protection of the Environment requires that all hazardous components or wastes are completely kept in a sealed container. A polymer membrane that is able to meet the new standards can be described as the polyurea spray elastomer technique.

The Code of Federal Regulations 40, Protection of the Environment requires that all toxic wastes or constituents be contained in a positive manner. In 1987 The Environmental Protection Agency passed a regulation under CFR 40 requiring a secondary method to contain spilled materials that contain dangerous chemicals but the regulation is being enforced.

  • Single-wall corrosion-proofed USTs and piping with small diameters must be equipped with secondary containment when in contact with soil.
  • Field-erected ASTs with a single wall need to be equipped with secondary containment underneath the tank. Single-wall bulk product pipes that is in contact with soil must be protected by secondary containment unless deferred by an API 570 Integrity Assessment.

In both instances both containments must be in place. secondary containment must function effectively for a period of time enough to allow for the proper cleanup of spills without causing any harm to the environment.

Many aboveground and underground storage tanks are constructed of concrete. The regulations states the fact that concrete is porous and the most secure method for secondary containment on concrete is using a liquid-applied monolithic polymer membrane. A polymer membrane that can meet the new regulations are polyurea spray elastomer technique.

Polyurea Spray Technology

Polyurea spray technology can be described as a fast-set, plural-component elastomeric membrane that provides an unidirectional, waterproof layer of protection. Many formulated systems meet the numerous requirements associated with secondary containment and adhesion to various substrates commonly found in containment zones. For containment zones that do not have solid substrates in use, geomembranes could be applied using the applied layer of an polyurea system that has characteristics with low shrinkage that are specifically designed to be suitable for the location.

The short setting time that is a feature of polyurea spray technology permits an immediate return to the service zone in a variety weather conditions, such as cold weather. The polyurea systems are also able to flex in low temperatures, thereby the absence of cracking problems that are common on other liquid-applied coatings and sheet-good membranes.

A variety of piping and tanks are susceptible to leaks. However it has been found that the majority of leaks found in these areas are caused by overfilling the storage tanks, which may result due to faulty equipment or an operator mistake.

This polyurea spray elastomer technique has been tested under the Florida Department of Environmental Quality standards regarding secondary containment liner system. The technology passed the test and is considered to be suitable secondary containment lining material.

For containment areas that do not have solid substrates available, geomembranes may be employed together with the applied layer of an polyurea system. Photo by GlasCraft, Inc.

Polyurea Installations

Being aware of the imminent environmental regulations The U.S. military has used the polyurea technology to successfully lining different storage areas for fuel containment areas. The technology is currently being developed by engineering contract companies working in conjunction with both the U.S. Air Force and U.S. Navy. The work includes applications for Patrick Air Force Base, Cape Canaveral Air Force Station, AUTEC U.S. Navy Base and numerous storage facilities for fuel at airports with municipal status (see the right-hand sidebar). The majority of these locations are covered by an epoxy paint method applied on the concrete. The epoxy has cracked due to the movement of concrete over time and has caused cracks to the containment area , and a possibility of environmental problems. Since it is it is an elastomeric system it is polyurea technology can bridge those cracks, and provides a better containment lining material.

To cover the existing asphalt, earthen berms, and gravel containment areas for gravel containment areas, the polyurea method is applied over the geotextile membrane as previously mentioned. The polyurea system is bonded with the membrane the tanks, pipe penetrations and sump zones and allows seamless installation without the need for mechanical fastening, which is the case with sheet-good material. A number of these applications were completed at large oil, fuel, oil, and chemical storage facilities. The polyurea systems utilized in these applications are specially designed to offer a minimal cure shrinkage when applied over the geotextile membrane. Recently completed work across North America includes projects in the 300,000-450,000 feet2 (28,000 up to 42,000 square meters) size range. The vast projects are generally completed in a month with trained installation crews.

In the wake of the revival of oil and exploration for gas across the U.S., containment areas for the fractionation fluid must be provided at each drilling location. A planned containment space is created for this purpose, then support walls made of metal are built as well as a polyurea spray technique is applied over an edging material. The polyurea system is bonded to the wall space and the geotextile fabric to create an unbroken, leak-free space. Tanks for storage are placed within the space and piped the same day as liner installation.

A Compliant Solution

For all organizations or companies dealing with dangerous materials and hazardous substances, the new secondary containment regulations are already ahead. Thanks to polyurea spray elastomer technique businesses can comply with the new rules by using a long-lasting coating solution without requiring excessive downtime.

The author’s notes: Many thanks for Steve DeReu at GlasCraft, Inc. (www.glascraft.com) for his help with this article.

Case Study: Cape Canaveral Air Force Station

Cape Canaveral Air Force Station (CCAFS) is the East Coast space launch facility of the U.S. Department of Defense. It is located in Cape Canaveral, Brevard County in Florida It is part of Patrick Air Force Base, which is home to the 45th Space Wing, and is situated near the John F. Kennedy Space Center.

The 11,000 sq ft2 fuel truck pad needed the improvement of the liner system. The previous concrete pad was suffering from massive cracks, and there was concern about possible spills of fuel that could seep through the groundwater. CCAFS decided to go with the polyurea method (PV 350, manufactured by PolyVers International) due to its outstanding performance record with the same application areas, its flexibility as well as its toughness in high traffic and the speed of installation.

The installation of polyurea spray elastomer technique was completed in December of 2007. The formulated concrete was a 3D profile CSP 4 – 5, that will ensure a strong bonds to lines of the applied liner technology. It was concrete surface was pressure washed with the hot water solution that contained BioSolve(r) (supplied from The Westford Chemical Corp.) to get rid of any contaminants. Then, it was rinsed.

The complete area was primed with a proprietary polyurethane primer system for adhesion enhancement and reduction/elimination of outgassing in the concrete area. This PV 350 polyurea system was applied with a minimum thickness of 100 millimeters (2.5 millimeters). A 1/4-inch (6.35 millimeters) saw-cut joint was utilized to aid in completing an PV 350-based system in the perimeter. The area was prepped over the course of a day. It was then primed as well as applied for the PV 350 process over the following days. A texture for the finish was applied to aid in slip resistance.

It was applied with an GUSMER(r) H-25/25 unit that is fitted with an GlasCraft(r) Probler(r) P2 spray gun that has an “02” chamber and tip that provides an output that is controlled and a spray pattern with a of 2000 PSI (138 bar) processing pressure.

Case Study: BBL Falcon Industries

Many companies have taken maximum advantage of the revival of oil drilling activity across Texas, Oklahoma, and New Mexico. Fieldwork is where secondary containment areas are constructed prior to the installation for condensate tanks. These containment areas, which are typically 24 56x 2.3 feet, are built on site. ArmorLiner polyurea system made by ArmorThane USA Inc. is applied over the geotextile, and on the walls around it unlike sheet-good liner systems which are sewed and can leak. This ArmorLiner system is applied at the minimum of 80 millimeters (2 millimeters) on the 12 oz geotextile fabric.

ArmorThane’s specialized containment applicator has a patent-pending procedure for the rehabilitation of existing drilling sites for tank construction as well as new installation sites. The areas that are designed have been cleaned, leveled, and sanded, the steel perimeter is put in place and the geotextile material laid. This is applied upwards and then onto the geotextile, and the border wall area. After the material is in its place and sprayed with the ArmorLiner inside the tanks and piping.

This system applied by using the PMC PHX-40 proportioning device that is fitted with a PMC Extreme spray gun. A “02” chamber is utilized along with the “01” tips for inserting that allows for a precise flow and spray pattern with a 2500 psi (138 bar) processing pressure.

Contact ArmorThane for more info on secondary containment and polyurea coating products.

POLY WATERPROOFING

What is polyurea waterproofing?

There are many reasons the need for waterproofing is so vital.

  • Blocks the growth of mold and fungi, which cause health problems and unpleasant odors.
  • Protects against damage to the interior and exterior of the building, including the materials and the building’s contents.
  • Keeps the building’s structure and prevents leaks
  • It’s a good investment because it will save you from future repairs.
  • Offers security by safeguarding the electrical installation that could otherwise be subject to short circuits where water is present.

In all of these situations, the investment in waterproofing is insurance for keeping the value of your construction on the marketplace.

What are the methods used in polyurea waterproofing?

Before deciding which waterproofing system to select, it is important to know what kind of surface you intend to be working on. It is important to determine the location ( facade, roof, cover pool, etc. ) and if it’s going to be used for transit by people or not, as well as the frequency at which the product will be maintained.

To achieve lasting and durable outcomes, it is vital to adjust the support before installation and always be in compliance with the rules and specifications of the manufacturer. After the waterproofing is completed and you have performed the proper maintenance, a test for water tightness is a way to ensure the integrity of the product.

  • A safe, effective, and popular method of preparing is asphalt material, especially in sheets.
  • The injection of polyurethane to fill fissures and cracks are an innovative method to stop leaks.
  • EPDM sheets (cold applied ethylene rubber) provide excellent resistance to weather and mechanical wear. Additionally, they allow large areas to be waterproofed in one piece.
  • Acrylic waterproofing is a liquid composed of synthetic resins and glass fibers. They are utilized to form an impervious and waterproof layer.
  • Natural waterproofing, Although less frequently, does serve a purpose. This is true for slate, granite, silicon ceramics (tiles) cement, fiber cement derivatives. Metals (aluminum stainless, galvanized and zinc, steel, copper, …).

The waterproofing of polyurea produces a highly durable waterproof membrane.

What are the benefits of waterproofing using polyurea in comparison with other options?

It allows for a uniform layer of application free of joints, is extremely flexible, and adapts to any irregularity on the surface. Its sprayed application can cover areas with uneven surfaces or complex geometrical shapes, forming a uniform layer.

It provides outstanding mechanical chemical and solar protection for a prolonged period, making it an extremely profitable investment. It is watertight and has total immunity to humidity.

Polyurea also has outstanding adhesion to any material. It is resistant to the effects of corrosion and can be applied on wet substrates.

Furthermore, the waterproof area can be used throughout the day after the application and allows the public to walk through.

Based on the information above, it is clear that waterproofing using polyurea is ideal for roofing, facades and balconies, terraces, swimming pools, and tanks, as well as other things.

If you would like to learn more about polyurea waterproofing or become an applicator, click here.

WHAT-IS-POLYURETHANE-1

What is polyurethane?

Every day, we use polyurethanes in some way or another – in our homes, offices, cars, and for leisure and sport activities, as well as on vacation.

There are many forms of polyurethane, which is a type of plastic material. You can make it rigid or flexible to suit your needs. This makes polyurethane the ideal material for many end-user applications, such as:

  • Insulation of freezers and refrigerators
  • Building insulation
  • Cushioning for furniture
  • mattresses
  • Car parts
  • Coatings
  • Adhesives
  • Rollers and tyres
  • Composite wood panels
  • Soles for shoes
  • Sportswear

Polyurethanes can be used in a variety of applications and are safe and modern. Polyurethanes are versatile and safe. They can be used to make a variety of industrial and consumer products.


Professor Otto Bayer (1902-1982) invented polyurethane in the 1930s. There are many types of polyurethane that look and feel different. Polyurethane is used in many products including coatings, adhesives, shoes soles, mattresses, and foam insulation. The basic chemistry of all types is the same.

Polyurethane was first used as a substitute for rubber during World War II. They were expensive and difficult to find at that time. Other applications were also developed during World War II, mostly involving coatings of various types, from aircraft finishes to clothing that is resistant.

Polyurethane was used in adhesives and elastomers in the 1950s. Later, flexible cushioning foams that were similar to the ones used today were developed.

Subsequent decades saw many further developments and today we are surrounded by polyurethane applications in every aspect of our everyday lives. Polyurethane is not a common product, but it is often ‘hidden’ behind other materials or covers. It would be difficult to imagine life without it.

Research and Science on Polyurethanes

Polyurethane can be described as plastic polymers that are made from combining polyols and diisocyanates ( TDI, MDI ). There are hundreds of types of polyurethane, each made in a different way.

1937

    • To create the soft and comfortable feel of a sofa or mattress, carbon dioxide is used to blow it. The foam will be more soft if it is used with more blowing agents.
    • A rigid foam can trap pentane in its closed cells, maximising its insulation ability.
    • Rollerblade wheels on the other side don’t require any blowing agents and instead have a dense, hardwearing consistency.
      Polyurethanes, energy efficiencyPolyurethanes offer many solutions for eco-design and energy conservation because they are versatile and excellent insulators. Polyurethanes are constantly looking for ways to minimize their impact on the environment. They are currently investigating ways to increase the energy efficiency of manufacturing processes, and create end products that can save energy like building insulation. These products can help businesses and families reduce their energy costs while also protecting the environment. Future production methods will be improved, which could lead to more affordable and environmentally-friendly polyurethanes.
      Did you know?
      You may not be aware of many interesting facts about polyurethane, but you can expand your knowledge by looking at the following list.You will also find links to informative fact sheets that provide more detail on various aspects of this product.
      Information and figures about polyurethanes
    • Insulation made of polyurethane insulation 1.6cm thick has the same insulation performance as concrete walls that are 1.34m thick!
    • All polyurethane foams are HCFC-free within the EU since 2003.
    • The EU’s polyurethane sector employs more than 360.000 people.
    • In the 1950s, the first surfboard made of polyurethane was used.
    • Models today designated A++ are 60% more efficient because of the inclusion of polyurethane in refrigerators.
    • In 1973, the introduction of thermoplastic polyurethane wheels (TPU) and later TPU boots made roller skates more popular. They are now known as Rollerblades.
    • Insulation saves energy by reducing the amount of polyurethane insulation needed to make one house.
    • Polyurethane is also known as PU and PUR.
    • All polyurethane foams are CFC-free in Europe since 1995. They have also been HCFC-free since 2003.
    • Many applications can use foams made from renewable materials, such as mattresses.
    • A PU-based solution is protecting more dams and dikes from storms.

POLYURETHANE TIMELINE

1937

Dr. Otto Bayer discovers basic polyurethane chemistry I.G. Farben

1940

First introduction of rigid foam into an aircraft

1941

Adhesive for rubber, metal, and glass

1948

First insulation application – a beer barrel

1949

Polyurethane rubber for vulcanisation

1953

Synthetic leather is made from polyurethane soles for shoes

1954

Cushions made of polyurethane foam

1958

Spandex fiber introduced for clothing pu

1959

NASA has developed space suits with a polyurethane liner for the Mercury mission.

1960

Panels for sandwich-building steel panels

1966

Integral skin for the sole of shoes and armrests

1967

The K67, the first all-plastic car with interiors made of polyurethane, is on display in Germany

1969

For increased safety, use bumpers on your automobile

1970

Imitation wood, Orthopaedics and Medical Applications

1972

Track surface for the Munich Olympic Stadium

1973

Roller skates are now possible with the help of thermoplastic polyurethane wheels.

1977

Bob Evans invented the polyurethane “Forcefin” flippers that can be used for many underwater activities.

1979

Invention of spray insulation for buildings

1980

Sandwich panels made from polyurethane-based materials were first introduced

1981

Polyurethane is used to make surfboards

1985

Passenger safety in cars with energy-absorbing foam

1989

For passenger safety in cars, energy-absorbing foam

1990

First football to contain polyurethane materials

1990

The first passive house constructed in Darmstadt (Germany) using polyurethane-insulated window frames

1991

Tempur-Pedic is the first to produce a memory foam mattress made from polyurethane in the USA

1992

NASA’s Endeavour spacecraft makes its first flight. The shuttle uses polyurethane for external fuel tanks protection

1993

Thin wall medical tubing, i.e. catheters

1995

To enhance performance, bicycle tires contain polyurethane material.

2001

To improve performance, car tires contain polyurethane material.

2003

All polyurethane foams are HCFC-free in Europe. Since 2003

JANUARY 2004

Elastocoast polyurethane adhesive system that reinforces existing dykes.

FEBRUARY 2004

After a 10-year clinical trial, Syncardia, a total artificial heart with polyurethane ventricles was approved for use.

2007

Ballast bed with partially foamed material for rail vehicles. This reduces noise pollution and maintenance costs.

JANUARY 2008

Swimsuits made of 100% high-speed, polyurethane are ideal for world-class swimmers.

FEBRUARY 2008

The porous Elastopave pavement allows air and water to move through it

2009

Cars with scratches can be repaired by self-curing coating

2010

The first solar-powered plane that has flown around the globe; polyurethanes are vital in this light-weight frame.

JANUARY 2011,

Apple unveils the smart cover made of polyurethane for its iPad 2

FEBRUARY 2011,

A robotic’smart bird’ has been developed that can fly with a bird-like motion. It is made of polyurethane, fibre-glass casing and nylon.

MARCH 2011

Airbus, which uses polyurethane technology for their aeroplanes has reached their 10,000th order

MAY 2011,

Formula One’s top tracks use polyurethane safety block to replace tires

JUNE 2011

For e-cars, lightweight designs and high-performance insulation are made of polyurethane foam.

JULY 2011

In Germany, the first plant to use carbon dioxide as an inert for polyurethane has been opened

Olympic track polyurethane

Polyurethane helps Olympic athletes achieve their dreams

Right now in Tokyo, we have brought together the best athletes from all over the globe for a summer of celebration and competition. Polyurethane is present in Japan to support these top athletes and make certain your favorite sports are possible. Here are some ways that polyurethane helps world-class athletes reach their sporting goals.

Running Track Systems | Synthetic Running Track | Paved In Place

Track Field Surface

In years past, track surfaces came in many forms: gravel, dirt, and asphalt. Most track surfaces used today by serious athletes are made from rubber crumbs that have been bonded with a polyurethane adhesive. 09- tracks provide relative springiness, which allows for faster runs. However, they can also cushion runners’ feet and prevent injury to their joints. Polyurethane track systems can withstand high temperatures without becoming sticky or tacky like asphalt tracks. Polyurethane track systems allow rainwater to flow through the track, with the water collecting in an irrigation device below.

NRG Track Systems | General Sports Surfaces

Track and Field Wear

Polyurethane is a well-known component of performance wear, as many readers know. It’s the perfect fit for apparel designed for track and field athletes. The fabric is stretchy, so it moves with the wearer and stays taut. Polyurethane clothing is lightweight and thin, which means that it doesn’t add bulk to the world-class athletes as they strive for excellence.

lzr racer banned Shop Clothing & Shoes Online

Swimsuits

The power of polyurethane was on full display in 2008 as the world witnessed its versatility. Swimmers set records in the pool as countries started to incorporate polyurethane into their swimwear. According to swimsuit manufacturers, the suits compress the muscles of swimmers which reduces friction and allows them to move faster in the pool.

The End of Swimsuit Design Innovation | Arts & Culture | Smithsonian  Magazine

New standards have been established by the bodies that govern various aquatic sports. They regulate how a swimmer’s swimsuit fits and what materials it may contain. Polyurethane remains an important part of these swimsuits and the 25 records that were set in 2005 were accepted.

Top 15 Tenders and RIBS for the Modern Cruiser - Southern Boating

Boating Equipment

Polyurethane is often used to protect athletes from the elements when they take to water in boating competitions.  performance polyurethane finishes protect boats exteriors from salt, wind, and water. A boat’s hull can also be encased in rigid polyurethane. This material can be used to improve buoyancy and add weight to all types of boats. Because it is able to absorb water and petrochemicals, polyurethane is a popular material for boats.

Ultra Shock 20' x 20' x Roll-Up Wrestling Mat | AK Athletic Equipment

The Mat

What does high jump, Taekwondo and pole-vaulting have in common with jiu-jitsu? They all take place on a mat. You guessed it, polyurethane is likely to be in that mat. Polyurethane is an excellent choice for mats that are used in athletic activities. Polyurethane is flexible and can absorb the impact of falling or tumbling athletes. Polyurethane is also strong enough to withstand repeated impacts from athletes over time.

batterieslifetime

The future of batteries is here: lithium-ion batteries that never go dead

In our future supercharged world, the demand for battery storage is expected to be immense, reaching upwards of 2 to 10 terawatt-hours (TWh) of annual battery production by 2030, from less than 0.5 TWh today. However, concerns are mounting as to whether key raw materials will meet this future demand. The lithium-ion r battery – the dominant technology for the foreseeable future – has a component made of cobalt and nickel, and those two metals face critical supply shortages on the global market.

After several years of research, a specialized Berkeley Lab has made significant progress in developing battery cathodes using a new class of materials that provide batteries with the same if not higher energy density than conventional lithium-ion batteries but can be made of inexpensive and abundant metals. Known as DRX, which stands for disordered rock salts with excess lithium, this novel family of materials was created less than ten years ago and allowed cathodes to be made without nickel or cobalt.

q

Focus

In our future amazed world, the demand for battery storage is projected to be enormous, reaching to upwards of 2 to 10 terawatt-hours (TWh) of annual battery production by 2030, from less than 0.5 TWh today. Nevertheless, issues are growing regarding whether crucial basic materials will be adequate to meet this future need. The lithium-ion battery – the dominant technology for the foreseeable future – has actually a component made from cobalt and nickel, and those two metals deal with severe supply constraints on the international market.

Now, after numerous years of research led by Lawrence Berkeley National Laboratory (Berkeley Lab), scientists have made considerable progress in establishing battery cathodes using a new class of products that supply batteries with the same if not higher energy density than standard lithium-ion batteries but can be made from low-cost and abundant metals. Called DRX, which means disordered rocksalts with excess lithium, this unique family of products was developed less than 10 years back and enables cathodes to be made without nickel or cobalt.

The classic lithium-ion battery has served us well, but as we consider future needs for energy storage, its dependence on particular important minerals exposes us not only to supply-chain risks, but also environmental and social concerns. This provides lithium batteries the possibility to be the structure for sustainable battery technologies for the future.

The cathode is among the two electrodes in a battery and represent more than one-third of the expense of a battery. Presently the cathode in lithium-ion batteries uses a class of products referred to as NMC, with nickel, manganese, and cobalt as the key ingredients.

With the current NMC class, which is limited to simply nickel, cobalt, and an inactive component made of manganese, the timeless lithium-ion battery is at the end of its efficiency curve unless you transfer to brand-new cathode materials, which’s what the DRX program deals. DRX products have enormous compositional versatility – and this is very effective due to the fact that not only can you utilize all sort of abundant metals in a DRX cathode, but you can also use any type of metal to repair any problem that might come up throughout the early stages of developing new batteries. That’s why we’re so fired up.

Cobalt and nickel supply-chain threats

The U.S. Department of Energy (DOE) has made it a top priority to find ways to minimize or get rid of the use of cobalt in batteries. “The battery market is dealing with an enormous resource crunch,” said Ceder. “Even at 2 TWh, the lower range of international demand projections, that would consume almost all of today’s nickel production, and with cobalt we’re not even close. Cobalt production today is just about 150 kilotons, and 2 TWh of battery power would need 2,000 kilotons of nickel and cobalt in some mix.”

What’s more, over two-thirds of the world’s nickel production is presently utilized to make stainless-steel. And majority of the world’s production of cobalt originates from the Democratic Republic of Congo, with Russia, Australia, the Philippines, and Cuba rounding out the leading 5 producers of cobalt.

On the other hand, DRX cathodes can use just about any metal in place of nickel and cobalt. Researchers at Berkeley Lab have actually focused on using manganese and titanium, which are both more plentiful and lower cost than nickel and cobalt.

Manganese oxide and titanium oxide expense less than $1 per kg whereas cobalt expenses about $45 per kg and nickel about $18. With DRX you have the possible to make really low-cost energy storage. At that point lithium-ion becomes unequalled and can be used all over – for lorries, the grid – and we can truly make energy storage abundant and economical.

Ordered vs. disordered

Ceder and his team established DRX materials in 2014. In batteries, the number and speed of lithium ions able to take a trip into the cathode translates into how much energy and power the battery has. In standard cathodes, lithium ions travel through the cathode product along well-defined pathways and organize themselves in between the transition metal atoms (normally cobalt and nickel) in neat, orderly layers.

What Ceder’s group found was that a cathode with a disordered atomic structure might hold more lithium – which suggests more energy – while enabling a larger series of components to function as the shift metal. They likewise found out that within that mayhem, lithium ions can easily hop around.

In 2018, the Vehicle Technologies Office in DOE’s Office of Energy Efficiency and Renewable Energy offered financing for Berkeley Lab to take a “deep dive” into DRX products. In collaboration with researchers at Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and UC Santa Barbara, Berkeley Lab groups led by Ceder and Guoying Chen have actually made significant progress in enhancing DRX cathodes in lithium-ion batteries.

For example, the charge rate – or how fast the battery can charge – of these materials was initially extremely low, and its stability was also bad. The research group has actually discovered methods to deal with both of these problems through modeling and experimentation. Research studies on utilizing fluorination to improve stability have been published in Advanced Functional Materials and Advanced Energy Materials; research study on how to allow a high charging rate was recently released in Nature Energy.

Given that DRX can be made with several elements, the researchers have also been dealing with which aspect would be best to utilize, striking the sweet area of being plentiful, low-cost, and providing great efficiency. “DRX has now been manufactured with nearly the entire table of elements,” Ceder stated.

This is science at its finest – basic discoveries that will serve as the bedrock of systems in future houses, lorries, and grids. What has made Berkeley Lab so successful in battery innovation for years now is our combination of breadth and depth of know-how – from essential discovery to characterization, synthesis, and manufacturing, as well as energy markets and policy research. Partnership is crucial – we partner with market and beyond to fix real-world problems, which in turn assists galvanize the world-leading science we do at the Lab.

Quick progress


New battery materials have generally taken 15 to 20 years to commercialize; Ceder believes progress on DRX materials can be accelerated with a larger team. “We’ve made terrific progress in the last three years with the deep dive,” Ceder stated. “We’ve pertained to the conclusion that we’re ready for a bigger group, so we can involve individuals with a more varied set of skills to really refine this.”

An expanded research group could move quickly to deal with the staying concerns, including enhancing the cycle life (or the number of times the battery can be recharged and discharged over its life time) and enhancing the electrolyte, the chemical medium that enables the circulation of electrical charge between the cathode and anode. Given that being established in Ceder’s laboratory, groups in Europe and Japan have also launched big DRX research study programs.

Advances in battery innovations and energy storage will require continued breakthroughs in the essential science of products. Berkeley Lab’s knowledge, distinct facilities, and abilities in sophisticated imaging, calculation, and synthesis allow us to study products at the scale of atoms and electrons. We are well poised to accelerate the development of promising materials like DRX for clean energy.

Are you looking for protective coatings? ArmorThane is our go to company for many materials but more than any other product, polyurea is the greatest product on earth. If you would like to have some questions answered or would like to know how you can become a professional applicator, click here.

choose an epoxxy

How To Choose An Epoxy

Tabletop surface coating, tank coating, quick coating, winter coating, coat of arms…. I mean, it just feels like there are thousands of epoxies out there. How do you choose which one you go with? Which one do you choose for which project? That’s a lot to consider.

Here’s the secret.

All the epoxies that you see out there. Well, 95 percent of them boil down to just four different types. Let me clear the air and explain each one.

In order to explain this best, let’s talk fruit!

I’ve made a little graph quickly for me to better explain everything…we’ve got an apple, an orange, a banana and a bunch of grapes. Each one of these is going to represent a type of epoxy.

Also on the other side, you’re going to see a pie, a beautiful glass of orange juice, some bread and, well, a grape juice. Now, keep in mind, all of these are fruits, but they’re all very, very different and have different applications. An apple is delicious in pies and orange. Well, that’s a good way to start the morning. Bananas makes my all time favorite bread, banana bread. If you’d like to send me some banana bread, I’m not going to be mad at you.

And grapes. Well, grapes make grape juice. Yes, these are all fruits, but not each one of these works for all the other applications that we have over here. For instance, I don’t want anything to do with banana pie and I don’t want to deal with grape bread either. They would just get hot and it would be like a nasty Ushery fruity situation. That sounds terrible.

All right. So each one of these fruits, well, it coordinates to a certain type of epoxy.

If we look at our apples and we can call that our surface coating , you might have heard of this as a tabletop. I’ll represent that with T tabletop or orange. Let’s call that are more UV resistant. That’s going to have that extra juice in there to make sure it doesn’t yellow nearly as quickly as our bananas. We can call that our quick hearing. And then lastly, we have our grapes on here. Let’s call that our deep pores, these four types of epoxy.

That’s it. I mean, that’s 99 percent of the epoxy that you see out there on Amazon online and all these YouTube videos. They’re one of these four types. So what are these four types of poxes good for and what are they not good for? Well, for surface coatings and tabletop a poxes tumblers counters. That stuff is perfect for it’s made for that for UV resistant stuff. That’s where art comes into play. Photo encapsulation stuff you want to protect and have it not yellow.

So quickly now quick curing epoxies are perfect for sealing wood for fast coatings, when you need to keep going on a project and you don’t want to wait twenty four hours for something to cure. And then deposit boxes are obviously perfect for river tables, large castings, and you still want beautiful clarity. Now these four types of epoxy are great, but this isn’t enough information. I don’t think. I think you need more details. I’m not going to be able to talk through all the other competitive products out there because, well, I don’t have all those details, but I do have details.

So let’s use our products as the examples. take a look at this board i have written on and I’ll talk through these products. All right. Here’s our chart. Here are our four epoxies. Clear cast. That’s our surface coating or tabletop amazing clear cast. Plus, that’s our UV resistant one amazing quick coat. That’s our fast curing.

And then amazing D for you guessed it hard for possie on this side. I’ve got some attributes that we should talk about. Depth, speed, air release, UV resistance, hardness and then applications again, because that’s really why you’re here. All right. So for depth’s, for amazing clear cast, an amazing clearcuts. Plus, you’re looking at about three eights of an inch, not quite half of an inch for amazing quick coat. It’s an eighth of an inch.

Remember, that’s a fast setting epoxy. So we’re dealing with more exothermic there. Camper’s deep and for making deeper. Well, that’s two inches. That is ideal. All right. Let’s talk speed through you off didn’t on that. I definitely do. You got you. All right. Let’s talk speed for amazing clear cast, an amazing clear cast. Plus, you’re looking about about a twenty four hour tax free time. Depends on your temperature. So always keep that noted.

Allow four to six hours. That’s fast. Hence quick coat, although your pour can take time. Twenty four to seventy two to get that tax free. Depends on your temperature again. Is this fully cured. No, that’s still five to seven days or three to five days depending on your product. Next up, air release. Here’s the thing. I’m going to shoot you straight. We formulate all of these to have amazing air release for their applications.

I’ve put the best over here for amazing deep for so that you realize a two inch pour is going to take a lot of air release in order to get that crystal clear. That’s why medicore is water thin so that the bubbles can get out of there. But keep in mind, it’s water thin. It’s not going to do a good job coating a tumbler. Go ahead, pour water on your tumbler and let me know how much of it stays on UV resistance.

I think you can predict this one. The best on this board is definitely the UV resistant epoxy. Wonder why. I will say, though, we do formulate every one of our poxes, though, to have fantastic UV resistance as much as possible within that formulation. No, but if you’re looking for that extra juice, you want to ask plus second to last. Let’s talk about hardness. That’s sure. Hardness on the D scale.

What is that?

It’s a lot of acronyms are 80 on the short scale. That means that they’re really hard and really durable, but not that far behind is amazing clearcuts. Plus with seventy five dollars, these things are as hard as like construction work or hard hats. There’s nothing soft here, folks.

Different Types of Industrial Epoxy Coating For Floors – Epoxy Coating  Specialists

Why should you care about hardness? Well, the fact that we’ve made these really, really strong just means that it’s going to be a lot more durable. It’s got to be harder to dig up your projects and scuffling. Last but not least, Lippestad assistance is the application. When should you use this stuff? Right. So for a surface coating epoxy like Almazan Clear cast, this is for, believe it or not, surface coating, small castings, countertops, stuff where you’re going to pour on a flat surface or around a surface that you’re going to rotate consistently and get a beautiful thane coating for amazing clearcuts.

Plus, we’re looking at art coatings, photo encapsulation, something where you want that project to last as long as possible because it has maybe sentimental value memories to it or it’s going to be outside a lot like a Tumblr where that you’re taking around here. That’s great. If you need that extra UV resistance for Amazing Quico, this is where we’re sealing wood for me. I use this to seal up a board before I pour a deeper foxe on it.

That means that I’m not going to have any air bubble issues or moisture issues. And since it’s only going to take four to six hours, I can keep my project moving for amazing deeper. Well, I hope it’s obvious by now, but River Table’s large castings things where you’re really pouring thick and you need that extra time for the air to release and you need the extra time to make sure it doesn’t exothermic turn yellow and cross. So there it is.

Now, you know, the four different types of epoxy when to use each one and kind of what are the features and benefits of each. If you want to see more content like this, if you’ve got specific questions, I want to know about them. Put them in the comments below and answer them.

PVE

Troy Explains: The difference between epoxy, polyurethane, and resin

Today we’re going to cover lot’s of scientific words such as resin, polyurethane and epoxy. You will probably have lots of questions like are they the same thing? Are they not the same thing? What’s your thing and how does ArmorThane fit into this? What about polyester? Is polyester a thing? I don’t know but i am going to answer all of these questions…

Let’s jump in!

We have resin. That’s the huge overarching term. There are organic resins, things like gums that trees produce. We’re not talking about that.

We’re talking about synthetic resins. That’s what you know and love underneath resin. We have thermal plastics and then thermosetting plastics. So thermoplastics, things that can be melted or injection molded or formed, things like acrylic, Delran stuff you probably don’t deal with. Plus we covered these terms in our last post.

So let’s ignore them! 

So thermal setting plastics are usually liquid one or two parts that become solid and stay solid. They don’t meltdown. That’s where we find our good old friends, polyester epoxy and polyurethane.

PU vs Epoxy: What's the Difference and Which Is Best for You?

Let’s quickly go through each. So polyester resin was one of the first synthetic resins that we came up with. And to be honest, it wasn’t that great. It’s brittle now. It’s just using boats with a bunch of fiberglasses to reinforce it. So let’s move on. 

Next was epoxy. Hey, that word sounds familiar. A pox, a type of resin wonder that that’s much stronger, much more solid. We enjoy that!

But it just becomes a hard plastic one time. And that’s it. Not a lot of variety. They’re perfect for river tables, tumblers. 

You know this stuff. You love it. Come on. 

After epoxy, they invented polyurethane. This is much more versatile. It can be foam. It can be rubber. It can be hard plastic. This stuff is wild and crazy ArmorThane that you use in your truck bed. That’s polyurethane.

Some of the phones that you have in cushions and seats are polyurethane woodturning bulls. And Penlington, the beautiful clarity of clear sloth. That’s polyurethane. I know what you’re saying.

Troy, you don’t care about science. All right. No big deal. That’s enough of that. Let’s jump into two things. Epoxy and polyurethane. Why and when you should use each one of them. It’s been all right. So for categories, I want to talk about his products, time, moisture, and ease of use.

Epoxy Resin Coverage Calculator: How Much Epoxy Will I Need?

Those are the huge, huge main differences between epoxy and urethane. So let’s jump into each so the products that are epoxy products of ours, you’re going to recognize these amazing clear cast, the new amazing clear cast plus and the even newer, amazing deep or all of those are poxes. So the time aspect of epoxy is it has a pretty linear, a pretty steady here schedule. That’s why when you’re mixing up a batch of epoxy, you have a thirty-five to forty-minute open time, and then you have a cure time of about twenty-four hours and then a full cure of about five to seven days.

It’s linear; it’s pretty steady. That’s very normal. It can still be a shorter time, like a quick coat or a much longer time. Like an amazing or, but it’s pretty linear now when it comes to poxes and moisture. No big deal. They don’t mind it. If you’re doing a woodworking project where epoxy is going directly onto the wood painting, use epoxy, it has a much higher tolerance for that type of moisture in the last category, ease of use for epoxy, there is a high tolerance.

What I mean by high tolerance, it’s forgiving. All right. A little bit of an ounce off here, there is a larger batch, or I’m not sure if I got everything mixed perfectly, perfectly. It’s still going to harden up. It’s still going to be fine. Now, what about Urethane coating? Well, a couple of different things here as far as products go. This is clear Slowes RC is another popular one. Flex, Flex Rubber’s, our flex foams.

There’s a ton of urethane products we have. They’re amazing. Let’s talk about their cure schedule, their cure time. What happens in that? Well, usually, with urethane, we have a lot more variables. We can change, and we can manipulate things accordingly. So what you’ll see is nothing happening, nothing going on. Nothing’s happened. Suddenly it’s cured. I couldn’t resist. I’m sorry. So these things cure quickly, usually on a short schedule.

So you’ll be going steady, and then bam, it’s cured, or you’re going pretty steady, and then really quickly it’s cured fast. That’s why we suggested woodturning applications because you can pour a blank, get it in the pressure. Part D demoed it in ninety minutes and got going with an epoxy. It’s a little bit harder. Here’s the thing, though, as much as we love how fast those things kick back, not a fan of moisture. I could put a little drop of water into your thing, and it would start to foam.

So should you use this within woodworking projects? No, not unless your wood is completely stabilized. Now, as far as ease of use of your Thain’s, well, there are a little less forgiving there. You are still forgiving, but a little bit less. That’s why you’re often going to see on the labels one to one by weight or two to one by weight. This is a little bit more of exact science, and you got to pay attention to it.

All right. So there you go. Hopefully, that clears much information about the world of resins and the epoxy world within that, and the polyurethane world within that, and the polyester resin world. It’s a lot. I know. Let us know if you want me to do another one of these. I’ll go even deeper to the extent.

Visit ArmorThane to learn how you can purchase and use these amazing chemicals!

maxresdefault

What’s the difference between thermosetting and thermoplastic polyurethane?

I have been seeing this and getting this question a lot from you readers as well as on message boards and facebook groups, so i figured i would take a little time and write up an answer for anyone looking.

Thermoset vs Thermoplastic

Thermosets are materials that undergo a chemical reaction (curing) and normally transform from a liquid to a solid. In its uncured form, the material has small, unlinked molecules (known as monomers). The addition of a second material (cross-linker, curing agent, catalyst) and the presence of heat or some other activating influences will initiate the chemical reaction (curing reaction).

How does a thermo-plastic or a thermosetting resin or plastic, differ from  each other? - Quora

The molecules cross-link and form significantly longer molecular chains and cross-link networks during this reaction, causing the material to solidify. This change is permanent and irreversible. Subsequently, exposure to high heat will cause the material to degrade, not melt. This is because these materials typically degrade at a temperature below where they would be able to meet.

Examples Of Thermosetting And Thermoplastics Materials. | Download Table


Thermoplastics are melt-process-able plastics (materials that are processed with heat). When enough heat is added to bring the temperature of the plastic above its melting point, the plastic liquefies (softens enough to be processed). When the heat source is removed and the temperature of the plastic drops below its melting point, the plastic solidifies back into a glass-like solid.

This process can be repeated, with the plastic melting and solidifying as the temperature climbs above and drops below the melting temperature, respectively. However, the material can be increasingly subject to deterioration in its molten state, so there is a practical limit to the number of times that this reprocessing can occur before material properties begin to suffer. Many thermoplastic polymers are addition-type, yielding very long molecular chain lengths (very high molecular weights).


As mentioned above, thermoplastics are capable of being repeatedly softened by the application of heat and hardened by cooling and have the potential to be the most easily recycled, which has seen them most favored in recent commercial uptake. In contrast, the better realization of the fiber properties is generally achieved using thermosets.
DSC can be a good tool to determine if it melts and can re-melt thermoplastic or just Tg (example) for thermoset.

Hopefully I have answered your questions regarding thermosetting and thermoplastic polyurethane. If you have any further questions, please do not hesitate to comment below and I will be glad to answer any you might have.

self-heal-polymer

Self Healing Polyurea Of The Future: Elastic Polymers Heal at Molecular Level After Cut

Scientists create an inexpensive self-healing polymer

Building semiconductors, orthopedic implants, and hydrogen fuel cells are just a few of the potential uses of a polymer created in the lab of a materials science and scientific engineering team at the University of Illinois. This university scientific team created the Hindered Polyurea material two years ago. Still, the team of undergraduates recently discovered that its sacrificial properties give it added commercial appeal in addition to its self-healing qualities.

They call the new polymer a ‘Hindered’ polyurea because they put a different functional group to the existing urea chemistry to make it so. It’s this ‘hinderedness’ that makes it dynamic.

The team is now set to commercialize the technology, focusing first on the sacrificial properties of the polymer: the fact that the urea bond is stable at room temperature but vaporizes when heated to 150 degrees Celsius.

The technology is especially useful when you want to create empty channels inside of bulk materials. They realized the technology could solve many of the existing problems in fabrication.

In manufacturing semiconductors, for instance, there needs to be channeled within the circuitry. Using their technology, the semiconductor would be layered around the polymer then heated up, causing the Hindered Polyurea material to vaporize and leaving holes inside the semiconductor.

While a similar method is currently employed in this kind of fabrication, the common materials used, such as polystyrene or polycarbonate, need to be heated up to 400 degrees Celsius and leave behind a residue that can cause other complications.

This technology is not revolutionizing the concept, but it’s an evolution – the next step forward for getting the process to be cleaner and cheaper. The existing degradable materials need a higher temperature to vaporize, severely limiting what exterior materials you can use. You need a strong original base for other materials, but it’s much easier for their material.

Another application targeted for the technology is titanium orthopedic implants.

One issue doctors face is that if you make the artificial joint out of a solid block of titanium with welding edges and other imperfections from putting separate sections together, the body recognizes it as a foreign object and might reject it. If you make it porous, like a honeycomb structure, the osteoblast cells from your bone go inside the titanium material and incorporate it into the bone in a process called osseointegration. They start developing their structures within those pores.

Yet another application is the production of hydrogen fuel cells, which might be highly in demand for future power automobiles.

Channels within each fuel cell are needed to allow liquid to flow through convection cooling to lower the battery’s temperature.

Although the team focuses on sacrificial applications at the onset, the group certainly sees many future applications for Hindered Polyurea as a self-healing material, especially in structures that see a lot of fatigue and stress, such as bridges and fuel tanks.

A lot of self-healing materials need some catalyst to work. This groups technology self heals at room temperature. The traditional Polyurea material is very stable and strong, which is good, but there isn’t much dynamicity.

Polymer regenerates all by itself | Research | Chemistry World

Hindered Polyurea is one of 18 finalists in the Cozad New Venture Challenge, sponsored by the University of Illinois Technology Entrepreneur Center. They will make their final pitches to judges as part of the Entrepreneurship Forum on April 28 at the Illini Union. The team is still in the material development stage, prototyping some empty channels and integrating them into some existing products. It uses Cozad to determine the niche market, narrow the specific target applications, and develop a business plan.

Cozad allowed them to find the right questions to ask. First, it narrowed down what research they needed to do from a commercialization perspective. Secondly, it allowed them to get their name out there.

So far, they have found this material to be cheaper, more efficient, and cleaner than other competitors. The difference in all three of those segments between their technology and existing materials is big enough that if they can get to a level of scale and market it, They think it would be adopted and would change many industries.

Polyurethane-Reuse-Illustration

New Polyurethane Designed to Degrade for Reuse

Polyurethane is utilized in a wide range of materials, including paints, foam mattresses, and insulation. These various applications produce large amounts of waste. A team at the University of Illinois has produced a method to break down polyurethane waste and turn it into other beneficial products.
The researchers will publish their findings at the American Chemical Society National Meeting and Exposition.
In the U.S. alone, 1.3 million tons of polyurethane waste is produced each year. The waste usually ends up in landfills or is burned, a process that requires a large energy input and creates toxic byproducts.
“We want to solve the waste problem by repurposing polyurethane,” said Ephraim Morado, a graduate student in the laboratory of chemistry professor Steven Zimmerman, who led the study.
Polyurethanes are made of two elements that are hard to break down: isocyanates, which are composed of nitrogen, carbon, and oxygen, and alcohol groups called polyols.
“The polyol is usually petroleum-based and is not degradable,” Morado said. The team combined a more easily degraded chemical unit to address this problem, an acetal, to the polyol. And because polyurethanes are water-resistant, the researchers developed an acetal unit that degrades in solvents other than water.
“When we add a combination of trichloroacetic acid and dichloromethane, the material swells and rapidly degrades at room temperature,” Morado said.
The degradation results that are formed can then be repurposed to new materials. For example, the researchers transformed elastomers—a type of polyurethane used in rubber bands, packaging, and car parts—into adhesive glue.
“One of the challenges with our method is that the starting material is costly,” Zimmerman said. “We are trying to find a safer, cheaper way to achieve this. Our second obstacle will be to get a patent and find someone interested in marketing it.”
The researchers are experimenting with the same technique on other polyurethane substances. They also hope to use milder solvents, such as vinegar, to carry out the degradation.
“The polyurethane materials have complex properties based on the chemical composition of the isocyanate,” Zimmerman said. “We can improve the structure of the acetal accordingly.”